Quanti quadrati?

 

quanti quadrati

 

Sicuramente avrete già visto questa immagine seguita dalla domanda:
quanti quadrati riesci a contare nella figura?
Viene automatico iniziare a contare i quadrati con lato lungo 1, che sono 16, quelli con lato lungo 2, che sono 9, poi quelli con lato 3, che sono 4, infine l’ultimo quadratone di lato 4.
In tutto: 16 + 9 + 4 + 1 = 30.
Interessante è provare ad estendere il ragionamento e chiedersi: quanti quadrati ci sono in una scacchiera composta da n x n quadrati?
Riconsiderando la somma finale: 16 + 9 + 4 + 1 = 30 , notiamo che gli addendi sono i rispettivi quadrati dei numeri 1, 2, 3, 4 (lunghezza del quadrato grande).
Provando con una scacchiera 8 x 8, che si usa nel gioco degli scacchi, si ottiene:


8^2+7^2+6^2+5^2+4^2+3^2+2^2+1=204

Quindi, in quadrato n x n, il numero dei quadrati che si riescono a contare è dato dalla formula:


n^2+(n-1)^2+(n-2)^2+(n-3)^2+⋯+2^2+1^2

Via Confienza 6 - Torino TO - Tel: 011 562 5335 - E-mail: Questo indirizzo email è protetto dagli spambots. È necessario abilitare JavaScript per vederlo.
Copyright 2020 S. Lattes & C. Editori S.p.A.
Privacy Policy | Cookie Policy